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Machine learning prediction of blood alcohol concentration: a
digital signature of smart-breathalyzer behavior
Kirstin Aschbacher 1,2✉, Christian S. Hendershot3, Geoffrey Tison 1, Judith A. Hahn4, Robert Avram 1, Jeffrey E. Olgin1 and
Gregory M. Marcus 1✉

Excess alcohol use is an important determinant of death and disability. Machine learning (ML)-driven interventions leveraging
smart-breathalyzer data may help reduce these harms. We developed a digital phenotype of long-term smart-breathalyzer behavior
to predict individuals’ breath alcohol concentration (BrAC) levels trained on data from a smart breathalyzer. We analyzed roughly
one million datapoints from 33,452 users of a commercial smart-breathalyzer device, collected between 2013 and 2017. For
validation, we analyzed the associations between state-level observed smart-breathalyzer BrAC levels and impaired-driving motor
vehicle death rates. Behavioral, geolocation-based, and time-series-derived features were fed to an ML algorithm using training
(70% of the cohort), development (10% of the cohort), and test (20% of the cohort) sets to predict the likelihood of a BrAC
exceeding the legal driving limit (0.08 g/dL). States with higher average BrAC levels had significantly higher alcohol-related driving
death rates, adjusted for the number of users per state B (SE)= 91.38 (15.16), p < 0.01. In the independent test set, the ML algorithm
predicted the likelihood of a given user-initiated BrAC sample exceeding BrAC ≥ 0.08 g/dL, with an area under the curve (AUC) of
85%. Highly predictive features included users’ prior BrAC trends, subjective estimation of their BrAC (or AUC= 82% without the
self-estimate), engagement and self-monitoring, time since the last measure, and hour of the day. In conclusion, an ML algorithm
successfully quantified a digital phenotype of behavior, predicting naturalistic BrAC levels exceeding 0.08 g/dL (a threshold
associated with alcohol-related harm) with good discrimination capability. This result establishes a foundation for future research
on precision behavioral medicine digital health interventions using smart breathalyzers and passive monitoring approaches.
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INTRODUCTION
According to the World Health Organization, harmful use of
alcohol accounts for 5% of the global disease burden, or 1 in 20
deaths1. This excess mortality arises both from behavioral
sequelae (motor vehicle accidents, suicide, and interpersonal
violence) and from medical morbidity (e.g., liver cirrhosis, cancers,
pancreatitis, and psychiatric comorbidities)2,3. Smart breathalyzers
are small hand-held devices that collect user-initiated voluntary
readings, which have been available commercially since 2013.
These devices reliably infer blood alcohol concentrations (BACs)
from exhaled breath and integrate with a smartphone via a mobile
application (app) and Bluetooth technology. Such smart breath-
alyzers could inform novel interventions to promote alcohol use
behavior change. Furthermore, digital platforms providing real-
time feedback could enable the opportunity to message users in
critical moments and offer machine learning (ML)-driven, perso-
nalized “Just-in-Time” alcohol interventions4. To enable real-time
intervention, an ML model would need to be capable of predicting
future BAC risk thresholds with reasonably high sensitivity and
specificity based on minimal information. Hence, we sought to
investigate whether breath alcohol concentration (BrAC) levels
associated with alcohol-related harms (BrAC ≥ 0.08 g/dL)5 can be
predicted with reasonable accuracy in a large, international
sample of smart-breathalyzer users, given behavioral, geolocation,
and temporal data related to device and app usage.
Prior studies have examined the potential utility of personal

breathalyzers for self-monitoring alcohol use in clinical and

naturalistic settings6. Some commercially available smart breath-
alyzers have validity comparable to a police-grade device7.
Although data generated by smart breathalyzers could be
informative for predictive modeling, no studies have addressed
this question. To evaluate real-world predictive potential, BrAC
levels need to be collected under real-world conditions with
naturalistic signal-to-noise profiles, representing typical user and
technological sources of variability.
Naturalistic data from personal breathalyzers are, by definition,

obtained during user-initiated drinking episodes. Despite this
limitation, these data might inform the development of ML-based
interventions targeting harm-reduction approaches (e.g., predict-
ing those drinking episodes that are more likely to result in higher
BrAC). These interventions can complement other ML-based
algorithms that might attempt to anticipate the onset of a
drinking episode. Moreover, to the extent that routine BrAC
feedback can provide corrective information regarding perceived
versus actual intoxication, continued personal breathalyzer use
could constitute an intervention in itself. This possibility is
consistent with empirical support for BrAC discrimination training,
in which drinkers are taught to accurately estimate their BrAC and
recognize when BrAC is approaching risky levels8. At least one
smart-breathalyzer app (e.g., BACtrack) asks users for subjective,
self-estimates of their BrAC prior to displaying objective BrAC
results, presenting a possible opportunity to study BrAC dis-
crimination naturalistically. To date, no study has examined
predictors of heavy drinking using objective, naturalistic samples
of BrAC measurements—or examined temporal changes in actual
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versus perceived intoxication—at a large scale. To establish a
foundation for digital health interventions in this area, this study
leverages a unique dataset with nearly one million BrAC
observations to validate a predictive algorithm of high BrAC and
to examine temporal changes in perceived versus measured
intoxication.
ML approaches are well suited to leverage large volumes of

data, such as those generated by smart breathalyzers, and have
exhibited strong performance in a variety of health-related
applications9. One particular class of ML algorithms, called
ensemble tree algorithms10, offers several advantages in this
case, such as the ability to easily model nonlinearities, interactions,
and incorporate missing data as predictive features, as well as the
capacity to easily parallelize and scale11. The ability to identify the
important features that explain the ML model can assist in
determining the most impactful modifiable targets.
Digital phenotyping of behavior constitutes a new frontier in

behavioral medicine12,13. However, very little is known about the
naturalistic patterns of commercial smart-breathalyzer use and
their association with population-based health outcomes, such as
intoxicated driving-related mortality rates. Expert recommenda-
tions to reduce alcohol consumption via smartphone apps
advocate self-monitoring14. Moreover, research shows that the
more users underestimate their level of intoxication, the greater
their likelihood of driving after drinking15. Hence, asking users to
provide a self-estimation of intoxication in the app, before they
receive their objective results from the smart breathalyzer, might
augment the benefits of self-monitoring. This study is the first to
investigate whether continued self-monitoring (by self-
estimations and device use) does indeed result in reduced
smart-breathalyzer-measured blood alcohol levels over time in a
large cohort of smart-breathalyzer users.
We sought to apply an ML algorithm to smart-breathalyzer data,

obtained from a multinational cohort and roughly one million
observations, in order to predict elevated BrAC levels (≥0.08 g/dl).
As an indicator of product value, we quantified the extent to
which this ML algorithm using smart-breathalyzer data could
predict objectively high BrAC levels, above and beyond a user’s
subjective BrAC estimate. Next, we describe the broader patterns of
use and provide explainability analyses of the most important
predictive features. To guide future smart-breathalyzer-based
interventions, we test whether repeated use of the App’s BrAC
self-estimation feature acts to improve user’s BrAC discrimination
capability over time, and utilize the algorithm’s results to highlight
where targeted messaging might be useful. Finally, we show the
external validity of these measurements by demonstrating
associations with alcohol-related motor vehicle deaths across
the United States. To our knowledge, this is the first and only
study of naturalistic, population-based BrAC data recorded in real
time during drinking events.

RESULTS
Characterization
A total of 973,264 user-initiated BrAC recordings were obtained
from 33,452 users, who used a BACtrack device for a median of 3.5
(interquartile range (IQR): 1.5–12.9) months (Supplementary Figure
1) (see “Methods” for further details). Supplementary Tables 1–3
provide counts of the number of distinct users and recordings for
each country and each state in the United States, as well as the
break down by year. Roughly half (52%) of recordings were taken
in the United States, and an additional 35% could not be assigned
to a country. The mean BrAC across all recordings was 0.057 ±
0.065 g/dL and the within-user aggregated BrAC mean was
0.059 ± 0.042 g/dL. Analysis of state-level data revealed mean
BrAC values ranging from 0.035 g/dL in Utah to 0.133 g/dL in
Montana (Supplementary Figure 3).

Reflecting the overall quantity and frequency of engagement,
the median (IQR) number of BrAC recordings taken per user was
80 (31–207), and the median (IQR) number of days on which at
least one BrAC recording was taken was 27 (10–68). On average,
users logged 2.69 ± 2.21 BrAC measurements per day the device
was used, over a median use duration of 106 (45–388). User-
entered app data for the number of drinks consumed had
significant missing data (see “Methods”) and provided little useful
variance, with the median number being one drink entered (1–1)
and the 95% percentile corresponding to two drinks entered.
We investigated whether naturalistic BrAC data from the

individuals in our particular cohort may reflect broader
population-level behaviors relevant to alcohol-related health risks,
using a subset of the data from 2014, which aligned with publicly
available data (see “Methods”). Specifically, we tested whether
states in the United States exhibiting higher user-initiated smart-
breathalyzer BrAC levels had higher impaired-driving death rates.
In regression analysis among 53,674 BrAC observations from 2641
distinct users, we observed a significant association between
higher average BrAC levels within our cohort and higher motor
vehicle death rates (B= 92.160 (95% confidence interval (CI)=
60.493–123.826), z= 5.704, p < 0.001; Fig. 1). Supplementary
Figure 2 (view by the web browser) depicts a dynamic map of
the United States, which allows the reader to toggle the view
between state motor vehicle death rates and state average BrAC
levels by clicking on the image background.

BrAC prediction
Per standard ML convention, users were randomly assigned to
train, validation, and test sets using a 70–10–20 percentage split.
Forty-six features (Supplementary Table 4) were entered into a
stochastic gradient boosting classification tree (GBCT) model
(learning rate= 0.1, n-estimators= 89, L1 regularization= 0.5, L2
regularization= 0.5) to predict high (≥0.08) versus low (<0.08)
BrAC levels. As the ratio of low to high BrACs was 2.37, all models
were trained using built-in class balancing functions, which place
a differential penalty in the cost function, thereby remediating the

Fig. 1 Association of average BrAC levels and motor vehicle death
rates by state. States with higher BrAC levels on average tend to
also have higher rates of death (per 100,000 population) for people
killed in crashes involving a driver with BrAC ≥ 0.08 g/dL, when state
average BrAC levels are adjusted for the number of users per state.
This scatterplot represents a linear regression model (using robust
fit), which depicts the significant association p < 0.01) between each
state’s motor vehicle death rate and the average BrAC level, adjusted
by the number of users. All data are from the year 2014; impaired-
driving data are from the Centers for Disease Control and
Prevention.
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tendency for the model to primarily learn the more prevalent class
(i.e., low BrAC values.) A validation set was used to tune the
hyperparameter settings. Predictions were made in an indepen-
dent test set of new randomly selected users among those not
previously included in the model.
Smart-breathalyzer users have the option to record their own

subjective BrAC estimate in the app before breathing into the
device. We used the user’s subjective BrAC estimate to predict
high or low smart-breathalyzer BrAC measurements as a baseline
GBCT model for comparison, against which the models with
varying feature sets should be contrasted. We additionally
included a majority class model for comparison, which performed
no better than random. The area under the curve (AUC) for this
base model was 0.64 in a randomly selected, separate test set of
users. In contrast to the base model, the final GBCT model was
yielded a substantially higher AUC of 0.85, sensitivity of 0.80, and
specificity of 0.73 (Fig. 2 and Table 1). Furthermore, the model
continued to perform well (AUC= 0.82), when removing the user’s
subjective BrAC Estimate, but demonstrated a more substantial
decrease (AUC= 0.74) when removing all features derived from

the history of prior BrAC measurements, gathered from the smart-
breathalyzer device.

Explainability
Feature importances (quantified herein as gain, or reduction in the
loss function per a given feature) can help to inform explainability
and intervention design by generating hypotheses regarding the
optimal intervention targets. Figure 3 illustrates the ranked
Shapley additive explanations (SHAP) feature importance values16

in the test set of separate users. The features that contributed the
most to model predictions were within-user behavioral factors
related to usage or engagement patterns over time, such as
measured BrAC trends over time (the average, maximum, and last
several recordings), the user’s own subjective BrAC estimate
(which is optionally recorded by the user in the app before
breathing into the device and receiving the read-out), the number
of prior self-monitoring episodes, the quantity and frequency of
engagement with the device and app, time since the last BrAC
recording, and hour of the day. The remaining features, such as

Fig. 2 Final model performance evaluation. To quantify the value of various data sources derived from the smart-breathalyzer device and
app, we contrasted the full model with all 46 features to other nested GBCT models, in which we removed different feature(s) (also see Table
1). To benchmark the success of these models, we quantified a base model, which used the user’s subjective BrAC estimate as the sole
predictor of the subsequently measured objective smart-breathalyzer BrAC levels. All model parameters were derived from the training set,
and evaluated in a separate test set (20%) of randomly selected users not seen by the training set. The full model with all features (purple line)
performed substantially better (21% higher; AUC= 0.85 vs 0.64) than the base model with only the user’s self-reported BrAC Estimate only
(gold line). Removal of the BrAC estimate from the full feature set reduced the AUC by only 3% (blue line), whereas removal of all features
derived from prior objective BrAC recordings reduced the AUC by 11% (green line), thereby demonstrating the importance of prior smart-
breathalyzer time-series measures for this algorithm’s performance. ROC-AUC receiver-operating characteristic area under the curve.

Table 1. Model performance characteristics and comparison.

Model ROC-AUC Accuracy F1 Sensitivity Specificity Precision

1. All features 0.85 0.75 0.76 0.80 0.73 0.55

2. All features except the subjective BrAC estimate 0.82 0.71 0.72 0.80 0.67 0.50

3. All features except the prior objective BrAC recordings 0.74 0.72 0.72 0.59 0.77 0.52

4. Only the BrAC estimate 0.64 0.75 0.71 0.31 0.93 0.64

5. Majority class 0.50 0.71 0.59 0.00 1.00 Undefined

We compared a series of gradient boosted classification tree (GBCT) models, in order to evaluate algorithmic performance and understand how specific data
sources impacted model performance. We contrasted the full model performance using all 46 features (Model 1) with performance after removing the user’s
subjective BrAC estimation (Model 2) or after removing all the features derived from smart-breathalyzer BrAC measurements (Model 3). Model 3, therefore,
represents how the algorithm might perform if it utilized only an app without the breathalyzer device. Finally, we computed two “base models”: Model 4 used
only the user’s BrAC estimation for predictions (and no other features), reasoning this represents how accurately users can estimate their own BrAC level
without specifically requiring a smart-breathalyzer or an app, and Model 5 represents the “majority class” performance, in which predictions default to the
most frequent class. All model parameters are derived from a training set, whereas model performance is evaluated in a separate test set of previously unseen
users (python, sklearn, LightGBM). All models were trained with class balancing; hence, we used the macro-averaged F1 score.
AUC receiver-operating characteristic area under the curve.
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geolocation-based and state- or zip code-level socioeconomic
factors, generally had less predictive value in this model.
Figure 4 displays the average BrAC level for all recordings taken

for a given hour on a given day of the week, in order to precisely
characterize the temporal patterns in smart-breathalyzer measure-
ments, as a potential predictive feature. BrAC readings are highest
between midnight and 2 a.m. on the weekends, and generally in
the evenings (note that to provide a more reliable estimate of the
BrAC average, we dropped readings in which the user did not
verify whether or not they followed the directions to wait 15 min
between eating or drinking and taking a BrAC measurement).
Supplementary Figure 3 illustrates the number of BrAC observa-
tions users provided by day of week and time of day (no
observations were excluded), revealing a slight increase in
weekday mornings.
Figure 5 (Supplementary Figure 4) displays the geolocations in

which BrAC readings were taken. At zoom levels <4, K-means
clusters are visualized to identify regions with a high concentra-
tion of data. At higher zoom levels, the geolocations of actual
BrAC recordings are visualized by a density heat map, but at very
high levels, recordings disappear for privacy purposes.
An important target identified by the model was the user’s

subjective estimate of their BrAC, considering that self-estimates
exhibit substantial inaccuracy17, and that interventions to improve
insight into one’s BrAC can reduce excess alcohol consumption
among moderate drinkers8. “BrAC discrimination” was computed
as the difference between the subjective BrAC estimate and the
objectively measured BrAC level per the smart breathalyzer. The
flow of data capture involves: (1) the user being invited to “guess”
or estimate their BrAC level in the app before submitting the
breath sample, (2) the user breathing into the device, (3) the app
provides the actual BrAC read-out, and lastly, (4) the user has the
opportunity to enter further notes by navigating deeper into the
app. Hence, we studied users’ ability to correctly discriminate their
level of intoxication among 443,262 BrAC recordings from 26,646

users. This analysis was limited to those readings in which either
the actual or estimated BrAC were above 0, BrAC recordings were
verified, and time zone data were available. The median BrAC
discrimination value was −0.031 g/dL (−0.061 to −0.009) and the
mean was −0.037 ± 0.043 g/dL, indicating that, on average, users’
BrAC estimations were underestimations of their measured BrAC.
Mixed modeling analyses revealed that there was a negative
correlation between the average within-user BrAC level and BrAC
discrimination ability (B (SE)=−0.772 (0.005), t(d.f.= 26,644)=
−143.12, p < 0.01 × e−15, adj R2= 0.435), indicating that, for every
0.01 g/dL increase in a user’s average BrAC, the user tended to
underestimate values by an additional 0.008 g/dL. Although
subjective BrAC self-estimations alone were not highly predictive
of objective BrAC values (AUC= 0.64), self-estimates did con-
tribute roughly 3% to model performance (Fig. 2). This contribu-
tion is also illustrated in Supplementary Figure 5, which shows that
the users underestimate their BrAC most when they are more
intoxicated and later at night.
The users’ capacity to accurately estimate their BrAC (defined as

a lower discrepancy between the estimate and actual value)
significantly improved over the first five episodes of self-
monitoring (B=−0.002, 95% CI: −0.002 to −0.001, z=−18.809,
p < 0.001, 80,833 recordings from 26,056 distinct users; Fig. 6). On
average, after the first five episodes of self-monitoring, a user’s
estimated BrAC values were <0.01 g/dL closer to the true BrAC
value, most of which occurred after the first self-monitoring
episode.

DISCUSSION
Alcohol is one of the leading behavioral causes of global disease
burden and mortality1–3. In the United States specifically, alcohol
mortality rates have doubled over the past two decades18. Hence,
scalable, low-cost, and easily accessible digital interventions to
reduce alcohol-related harms are needed. Breathalyzers or

Fig. 3 Feature importances. SHAP values quantify the relative impact of each feature on model performance in the hold-out test set of
separate users. This figure depicts the most important features, whereby the horizontal location shows whether the feature is associated with
a lower (left) versus higher (right) predicted probability of a high BrAC ≥ 0.08 g/dL) across all observations in the test set. The color
demonstrates the directionality of the association. These analyses reveal a prominent role for habitual behavior patterns, self-monitoring,
engagement, time of day, and human-in-the-loop features such as self-estimations or verifications. They depict secondary roles for other
temporal, geographic, policy-relevant, and socioeconomic factors.
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wearable sensors, together with apps and ML algorithms, provide
a valuable platform for such interventions. However, to date, no
published studies have characterized smart-breathalyzer use and
self-monitoring of blood alcohol content under naturalistic
conditions. Hence, this study provides a needed foundation for
digital intervention development to reduce alcohol-related harms,
leveraging a unique dataset of nearly one million recordings in an
international sample.
Based on limited information from the smart-breathalyzer and

app, this ML model was able to successfully discriminate 85% of
recordings with BrAC levels at or above a common legal
intoxication threshold (≥0.08 g/dL). To provide a real-world
benchmark for this algorithm, it was 21% better at predicting
when a user was legally intoxicated than the user’s own subjective
estimate, or “best guess”. Moreover, when we removed self-
estimated BrAC, model performance remained high (AUC= 82%),
relative to the full model (AUC= 85%). In general, we observed
graded reductions in model performance when subtracting
different feature sets from the full model. Hence, these findings
indicate that this model’s predictions represent a complex
interaction of individual drinking habits and self-monitoring
behavior with environmental, public health contextual factors
(e.g., alcohol tax rates, regional urban/rural percentages, and
motor vehicle death rates). The most predictive features were
various indicators of a prior history of higher heavier drinking,
time of day, and the quantity/quality of prior engagement.

Geographic features were generally less predictive; nonetheless,
one’s geographic region and being closer to the location of one’s
most recent BrAC measurement were among the more predictive
location-based features. In sum, the final model-derived prob-
abilities may serve as a “digital biomarker” to improve the
targeting, monitoring, and personalization of digital health
interventions to mitigate alcohol-related harms.
This study demonstrates the feasibility of deriving predictive,

ML-based “digital phenotypes of behavior”12 from smart-
breathalyzer data, in the largest and most internationally diverse
user base published to date. Whereas many behavioral studies rely
on users’ willingness to answer lengthy surveys and their ability to
accurately self-report behavior, smart breathalyzers provide
volumes of objective behavioral, temporal, and geographic data.
Leveraging these data to perform digital phenotyping has the
potential to augment the effectiveness of app-based substance
use reduction programs19. Such programs are desirable due to the
high cost, stigma, and limited access to in-person therapy.
Whereas health apps often suffer from poor engagement and
high attrition20,21, these data revealed a tendency toward longer-
term user engagement with the smart breathalyzer.
Many digital health apps rely heavily on the behavioral strategy

of self-monitoring22, or tracking one’s own behavioral data
accompanied by personalized feedback23, as a self-regulatory
process that is theorized to lead to behavior change. In this study,
users underestimated their BrAC by almost 0.04 g/dL on average.
Not surprisingly, the more intoxicated a user was, and the later at
night it became, the more likely a user was to underestimate his/
her BrAC. Prior evidence is consistent with our findings that many
people fail to realize when they are legally intoxicated: 37% of bar
patrons with BrAC levels >0.08 g/dL reported feeling “no buzz or
slightly buzzed”17. We found that users’ ability to accurately
estimate their BrAC improved slightly over the first few episodes
of tracking. However, thereafter, users continued to underestimate
their BrAC over longer periods of engagement. Although user-
inputted written reflections on the quantity, container sizes, or
beverage types might be a useful predictive feature; very few
users elected to provide such text notes. In sum, these data
indicate that digital self-monitoring alone is not enough to fully
mitigate alcohol-related risk behaviors. However, an ML algorithm
could potentially incorporate users’ subjective BrAC estimates as a
“human-in-the-loop” predictive feature, and provide the user with
personalized, harm-reduction strategies based on ML-derived
insights.
Taken together, the features that emerged as most predictive in

this ML model resemble a “digital signature of a habit,”
highlighting patterns in BrAC readings, which were defined by
their similarity in time, place, and relative to one’s prior behavior.
This study engineered autoregressive features representing
within-user behavior trends, which provided one means to
quantitatively represent alcohol use as a habitual behavior24.
Furthermore, the desire to drink alcohol can be triggered
automatically by cues, which have been repeatedly paired with
a rewarding feeling (e.g., alcohol’s euphoric effects), thereby
leading to the formation of unconscious associations (cravings).
Hence, we reasoned that users of smart breathalyzers may be
similarly triggered by temporal and geographically patterned cues
—for example, passing a favorite restaurant bar may trigger the
desire to drink25. This understanding motivated the quantification
of the hour of the day from timestamps and distance metrics from
geolocation, which both contributed to model predictive
accuracy.
Digital biomarkers, similar to this ML model, could inform

Precision Behavioral Medicine interventions in several ways13. For
example, digital biomarkers might track when behaviors are
becoming more or less habitual for a given individual (i.e., when
prior behavior and temporal/location factors become more or less
predictive of future behavior). Such digital biomarkers could then

Fig. 4 Heat map characterization of BrAC levels by the hour of
day and day of the week. The value in each square of the heat map
represents the average BrAC level (g/dL) measured across all
observations taken during that hour and day of the week, such
that white is the highest, red and orange indicate values that exceed
the legal limit, and blue values are below the threshold of risk.
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monitor an individual’s response to pharmacologic or behavioral
therapies, used to inhibit or desensitize the association between a
trigger (cue) and the reward26–28. Data visualizations might help
users to better identify and recognize their own unique habitual
usage patterns and/or triggers. Personalized environments (a
familiar bar) evoke stronger reward cue reactivity than standard
environments (a generic bar)29. Hence, if the app were able to
access geolocation periodically (as was done in another study to
reduce risky drinking30), the app could initiate preventative digital
coaching when users entered high-risk locations, and before users
engage with the smart breathalyzer. For example, in anticipation
of high-risk times and locations, the app might nudge a user to
engage a healthier substitution behavior or self-care strategy,
thereby preempting cravings.
In terms of validity, a prior study reported that BrAC

measurements by this device were as highly correlated with
actual blood alcohol levels as a police-grade device6,7. We
recognize that BrAC levels can be spuriously inflated by mouth
fumes if users neglect the app instructions to wait at least 15 min
between consuming alcohol and taking a measurement. However,
the app feature enabling users to verify a recording appears to
help identify this user behavior as a source of measurement error;
therefore, our ML model included it as a predictive factor.
Specifically, the coloring and directionality of the SHAP values for
this user-verification feature (Fig. 3) indicate that verification was
primarily used by the model to improve predictions of low BrAC,
whereas the absence of verification was a weaker predictor of
high BrAC. It is possible that the behavior of failing to validate
might be a proxy marker for impulsivity or poorer attentional
control, and thus constitutes valuable information to include.

Fig. 5 International geospatial characterization of BrAC self-monitoring hot spots using a smart breathalyzer. The dynamic web-based
version of this map can be explored by downloading Supplementary Figure 3 and dragging it into a browser window. The green dots
represent “hot spots”, or centroids representing clusters of high-density activity, obtained by conducting a K-means analysis on the latitude
and longitude of the observations. Blue-purple coloring represents the density (or number) of the actual observations, which become visible
upon zooming in further. This map was generated using the Mapbox API (San Francisco, CA) application programming interface, with
permission.

Fig. 6 Improvements BrAC discrimination as a function of self-
monitoring. Episodes of self-monitoring were defined as any new
BrAC measurement occurring at least 12 h after the prior BrAC
measurement. Higher values on the y-axis denote a greater
discrepancy between the true BrAC and the user’s self-estimated
BrAC (on average, an underestimate of the true BrAC). Values where
both the true BrAC measurement and the user’s BrAC estimate were
both zero were excluded, as such values likely indicated product
tests or demonstrations rather than true self-monitoring. For this
graph, the absolute value of BrAC discrimination values were
averaged within each user-episode and graphed as a function of the
first five episodes of self-monitoring, with the error bars represent-
ing the 95% confidence interval. The number of observations by
episode were: (1) 25,503, (2) 19,292, (3) 15,676, (4) 13,193, and (5)
11,593.
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We found a significant association between the state’s average
BrAC level and the motor vehicle death rate, which supports the
notion that smartphone-enabled devices provide data that may
usefully inform public health and policy interventions. Although
speculative, this initial evidence supports the validity of natur-
alistic BrAC measurements as a new index of naturalistic
consumption, relevant for studying public health or epidemiologic
questions. Moreover, the Colorado Department of Transportation
recently announced a public health initiative to provide smart
breathalyzers (from BACtrack) to individuals who recently received
a first DUI in advance of Labor Day, to help prevent these
individuals from getting a second DUI31. Hence, future studies
could attempt to verify whether temporal patterns in BrAC
measurements are responsive to population-scale interventions
utilizing smart breathalyzers.

Limitations
This study has several limitations. Although we excluded
recordings in which users reported that they had lent their device
to another person, and where needed, we excluded or adjusted
for unverified recordings, it remains likely that some measurement
noise was introduced by unreported user error. Predictions may
also be slightly less accurate for users whose location services are
turned off, although geographic features were not among the
most predictive. For future predictive models, it will be important
to focus on models that anticipate drinking onset; however, that
would likely require the device to gather more extensive data in
the background when the user is not in the app, which was not
available in this study. Moreover, users and regulatory bodies both
are increasingly wary of data privacy concerns. Nonetheless,
interventions at the onset of a drinking episode can still be
clinically relevant from a harm-reduction standpoint4,32. Finally, we
do not know the sampling biases inherent in which individuals
choose to purchase or use a smart breathalyzer; hence, such
biases could conceivably reduce the generalization of the findings.
However, the large size and geolocation-based diversity of the
user base, combined with observed correlations with US
population-level health data for alcohol-associated motor vehicle
death rates, implies that the results have sufficient generalizability
to be relevant to larger-scale health concerns.
In conclusion, alcohol use is a major preventable behavioral

cause of morbidity and mortality, and the application of ML
algorithms to smart-breathalyzer data has the potential to drive
innovative, large-scale, cost-effective preventative interventions.
These results provide the first large-scale, global “snapshot” of
naturalistic usage patterns for smart-breathalyzer devices. We
provide the proof of concept that risk-associated BrAC levels can
be predicted with high accuracy simply from the “digital exhaust”
of the user’s interaction with a smart breathalyzer and associated
app. Hence, this characterization informs future hypothesis
generation for Just-in-Time Precision Medicine interventions
guided by ML.

METHODS
Participants
We analyzed 973,264 unique BrAC observations from 33,452 distinct users,
collected using a commercially available smart breathalyzer (BACtrack, San
Francisco, CA) between May of 2013 and June of 2017. Data were provided
to researchers at the University of California, San Francisco through a data-
sharing agreement. Studies validating certain BACtrack breathalyzer
models against police-grade devices report similar accuracy6,7. The
BACtrack App syncs with the Bluetooth-enabled breathalyzer to collect
data, only from users who have their data storage activated and location
services turned on. Users were prompted to enter their “best guess”
(estimate) of their BrAC before exhaling into the device. Demographic data
such as gender, age, or race/ethnicity were not available, and device ids
were not included in the dataset for deidentification purposes. In addition

to BrAC measurements (reflecting momentary estimates of users’ BAC), the
initial dataset consisted of timestamps, geolocation, and a limited number
of other engagement features, including users’ BrAC estimates and
verification that they followed app instructions to wait 15 min from the
last sip prior to taking a BrAC measurement (verified). Users could indicate
whether a given BrAC measurement was provided by themselves or
another individual (user-provided). We removed all observations (14.9%)
that were reported as not user-provided, and any duplicate observations,
but we retained unverified measurements (~12%) in order to quantify their
potential impact. Users also had the option to provide a drink count, profile
photos, and write free-form text notes, although these data were sparse.
The company BACtrack was not involved in the design or funding of this
study. The University of California, San Francisco Institutional Review Board
approved this study, including waiver of consent to utilize these
deidentified data.
The commercial smart-breathalyzer company BACtrack (San Francisco)

provided researchers at the University of California, San Francisco, Division
of Cardiology, School of Medicine, with a deidentified dataset including
1,268,329 total rows of data, collected between May of 2013 and June of
2017. After rigorous data cleaning, the final study included 973,264 total
BrAC measurements, recorded by 33,452 distinct users. To clean the data,
we excluded 146,244 values (14.9%) that users indicated did not belong to
them (e.g., in the app, users can indicate that they lent the device to a
friend), as they would likely reduce model predictive capability. In addition,
data were excluded per the following criteria: (1) 30,056 duplicate rows, (2)
102,531 rows missing a user id, and (3) 1350 rows with technical errors in
the translation of the GMT timestamp to local time. An additional five rows
were excluded due to BAC levels exceeding 0.50 as likely technical errors
or fatal1. Although very high BAC levels (e.g., those >0.25) might potentially
be spurious, they might also conceivably be biologically plausible; hence,
we utilized a nonparametric algorithm that can manage potential outliers.
Of the remaining rows, 120,989 BrAC observations were not “verified”,
indicating that participants may not have followed the instructions not to
eat or drink during the 15min period prior to BrAC measurement. We
retained these observations in the analyses because a practically useful
algorithm must be robust to expected deviations from “ideal” user
behavior, and we were confident that the tree algorithm would exhibit
robust predictive performance so long as verification was included as a
feature in the model.

External validity investigation
To assess whether BrAC recordings relate to regional variation in alcohol-
related harms, we tested whether higher BrAC levels, averaged by state,
would correlate with death rates from alcohol-related driving. We
downloaded data from the Centers for Disease Control and Prevention
(CDC) on state-level rates of death from impaired driving (per 100,000
population) for people killed in crashes involving a driver with a BAC ≥
0.08 g/dL for the year 201433. State average BrAC values were based on
53,674 BrAC observations from 2641 distinct users from 50 states in 2014,
and were normalized to the square root of the number of users for that
state. The association between motor vehicle death rates and BrAC levels,
by state, were analyzed using robust linear regression models in Python 3
(statsmodels).

Self-monitoring and engagement
To represent the digital signature of alcohol consumption, myriad
statistical features were constructed using time-series of BrAC measures.
For each BrAC observation used as the label to supervise the ML algorithm,
BrAC features were constructed based only on the time-series of BrAC
levels previously measured for that user, thereby permitting indices of
prior behavior to predict future behavior. Features included the average,
minimum, maximum, range, median, quartiles, and the interquartile range
of all prior BrAC observations previously recorded for that user. As recent
behaviors may be stronger predictors than older behavior, we also created
a set of lagged variables, using the prior three BrAC observations.
The breathalyzer app allows users to self-report a BrAC “guess”, or

estimate, during the time between activating the device and recording the
breath sample. Evidence shows that helping the user recognize the gap
between a user’s perceptions and his/her actual objective alcohol
measurement is a potentially useful component of alcohol behavior
change interventions8. Hence, we quantified “BrAC discrimination” as the
discrepancy between a user’s subjective estimate of their BrAC and their
actual BrAC level, such that a negative number represents an
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underestimate of the true BrAC. We sought to test whether or not a user’s
subjective BrAC estimates became more accurate, the more episodes they
self-monitored.
The duration of engagement with the device was quantified as the

number of days of engagement from the first to the current BrAC
observation. To assess the quantity of engagement, we computed the
number of BrACs each user previously measured. To assess the frequency
of engagement, we assessed the number of days on which users measured
at least one BAC; for example, this metric differentiates users who
measured BrAC multiple times in a day versus those who measured once a
day for 10 days. Because some users measured their BrAC often within a
short period (e.g., 15 min), we also quantified frequency by “episodes” of
self-monitoring. We quantified a new self-monitoring episode as a new
BrAC recording occurring ≥12 h after that same user’s prior recording.
Several less common forms of deeper engagement with the app were

additionally quantified. The presence of a photo logged by a user with the
app was included as a feature (10,931 or 1.14% of the observations
included a photo; the actual photos themselves were not included in the
dataset). Second, users had the option of logging the number of drinks
consumed, which occurred in 8415 observations (0.87%).
Users could enter a note as a free-text field in the app, although the

prevalence was sparse with 930 notes (0.1% of observations). We used
natural language processing (NLP) to investigate why users self-monitor,
what they focus on when they self-monitor, and how such reflections are
associated with BrAC levels. NLP features were quantified using regular
expressions to detect language reflecting the numeric amount, container
type, and beverage type, as well as the presence/absence of a note. A
feature for the binary existence of a note (“has note”: yes/no) was created.
In addition, we sought to quantify features for a model prediction that
reflect user self-monitoring of the amount, type, and impact of alcohol
consumption. We hypothesized that greater user engagement with the
app, in terms of entering cognitive reflections to quantify or characterize
their alcohol consumption would help predict a lower BrAC, although we
cannot strictly test that in this cross-sectional design. Regular expressions
in Amazon Web Services Redshift’s SQL language were used to extract
features representing the count of instances per note of the following: (1)
numeric amounts, (2) volumetric measurement amounts (e.g., “glass,
bottle, tumbler”), and (3) alcohol content (e.g., beer, wine, and whiskey). A
final NLP self-monitoring feature was derived as the sum of these counts.

Temporal features
Minutes since a given user’s last BrAC measurement were computed as a
feature for analysis, based on Universal Time Coordinated (UTC) time-
stamps. To compute hour of day and day of week as additional features,
user local timestamps were first quantified, based on time zones and UTC
timestamps, where data were available. Dates considered holidays were
integrated, given that drinking may be more prevalent on holidays.
Because the majority of the users were based in the United States, and
more drinking occurs in conjunction with certain sporting events, we also
created separate features representing dates of the Superbowl, World
Series, and NBA Championships, and whether a given user’s observation
was taken in a winning or losing state.

Location-based features
For users living in the United States, zip codes were provided with the
dataset, which corresponded to where the BrAC measurement was taken.
In order to quantify whether a given zip code was predominantly urban or
rural, we merged data from the United States Census Bureau34 regarding
core-based statistical areas and their relationship to zip codes35. Features
were created to reflect the estimated population size of each zip code, and
the percentage of each zip code defined as an urban or a rural area
(<50,000 individuals per the US Census definition)36. Zip codes were not
entered directly into the GBCT model to avoid the need for very deep
trees, which would have promoted model overfitting. However, the total
count of the zip codes, states, and countries in which each user had ever
self-monitored BAC levels was added as features.
The dataset provided analyzable geolocation data for 66% of BAC

observations. As raw geolocation data cannot be effectively inputted and
analyzed by the GBCT model, K-means clusters were computed to
designate regions with a high density of data and distance features were
engineered from the geolocation data as described below. Distances
between measurements may be useful to indicate habitual drinking spots,
variability in drinking venues, or “jet-setter” lifestyles. We used the

following formula to calculate distances between subsequent geolocations
in Redshift (see Supplementary information; https://github.com/
kaschbacher/bac). To compute distances, we computed the distance
between the locations where a user measured his or her BAC at time “t”
versus his/her previous BAC (time “t− 1”). We then took the distribution of
distances within each user and computed additional statistical features to
enter into the GBCT model: the average distance, min and max distance,
median and quartiles of distance, the interquartile range, and the
coefficient of dispersion, which can help identify users who tended to
measure the majority of their BACs in one location, with few trips over
longer distances. Elevation was provided in the initial dataset and was
included as a feature.
BACtrack users are given the option to verify whether they followed the

instructions to wait a minimum of 15min between drinking a beverage or
eating something and taking a measurement, which, if not followed, may
artificially inflate a BrAC reading. However, as this feature is small and
toward the bottom of the screen, some users who have unverified
readings may not have seen it. We conducted mixed modeling analyses
(Python, statsmodels) to better understand whether the validity of BrAC
readings was likely adversely affected by users who did not follow the
instructions to wait a sufficient time between drinking and taking a
reading, that is, “unverified” readings.
As taxes tend to beneficially impact alcohol-related health risks at the

population level37, we incorporated state-level data from 2014 (the latest
available and best overlap with BrAC year) on state taxes placed on
alcohol, as well as sales, gas, and cigarette tax rates38.
As alcohol use is correlated with income and structural features of the

environment39, we merged information from the US Census Bureau
quantifying the official estimated number of individuals living in poverty,
in units of thousands, per state40.
We integrated information on the prevalence of heavy drinking per state

from the Center for Disease Control on chronic disease indicators, as a
means to bridge between digital health user-level data and epidemiologic
factors41.

Data analyses
Descriptive statistics and simple statistical feature engineering were run
using PostgreSQL queries, using counts and percentages, means and
standard errors, medians and the interquartile range, or lagged computa-
tions, as appropriate.
A robust linear regression analysis (Python, statsmodels) was conducted

to determine whether higher state average BrAC levels were significantly
associated with higher motor vehicle death rates, adjusted for the square
root of the number of users per state. In addition, we conducted mixed
modeling analyses (Python, statsmodels) to determine whether certain
user behaviors (not verifying their reading, testing the device) were
associated with BrAC levels.
We trained a stochastic GBCT model using the LightGBM algorithm in

Python 3 (scikit-learn API). Data were randomly split into training (70%),
validation (10%), and test sets (20%), which did not contain overlapping
users. We fit model parameters in the training set, and tuned
hyperparameters in the validation set. Based on a validation set, with a
default learning rate (0.1), early stopping (n= 5), and moderate
regularization (L1= 0.5, L2= 0.5), the optimal number of trees was
determined to be 89. We conducted a model evaluation in an independent
test set, with no overlapping users, using the receiver-operating
characteristic area under the curve as the primary metric, with sensitivity
(recall), specificity, and precision as secondary metrics, using a threshold of
0.5. We filled missing data with a value of −999, which has the advantages
that: (1) all data were included in the analysis (no biases are introduced by
the exclusion of incomplete data observations), and (2) the tree algorithm
then used “missingness” as a predictive feature in the algorithm by
splitting on low negative values.
To conduct feature selection, we conducted correlation analyses across

98 features, and highly correlated sets of features were either combined
statistically or a single a priori indicator was selected, yielding 46 features.
To identify the features with the greatest impact on predictions, feature
importances were computed using SHAP values16. The final model was
evaluated in the separate test set using the constrained feature set and
hyperparameter settings derived from the validation set.
In order to facilitate future intervention development, we conducted

additional statistical analyses to better interpret features with high
importance, which might play a central role in the delivery of a precision
medicine intervention. Visualizations of temporal and geographic
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patterning of BrAC levels were generated a via Python (open source), R
(open source), plotly (Montreal, Canada), Highcharts (Vik i Sogn, Norway),
and MapBox API (San Francisco, CA). To visualize the primary geographic
clusters of BrAC observations, a K-means analysis (Python, sklearn.cluster.
KMeans) with 120 clusters was run on the latitude and longitude of all
observations.
To test whether individuals who use the device more frequently show

improvements in BrAC discrimination (accuracy in estimating BrAC), we
conducted a mixed-model linear regression analysis (python, statsmodels)
using self-monitoring episode (level 1) within user (level 2) as a predictor of
BrAC discrimination. We limited the analyses to observations in which
either the actual or estimated BrAC value was not zero, and data for the
BrAC estimate and local timestamp were available. Because we anticipated
that improvement due to self-monitoring would be most pronounced
during the initial period of use, we further limited the data to the first five
episodes. To improve the normality of the data and eliminate statistical
outliers in our outcome variable (BrAC discrimination), we excluded
datapoints <2.5% of the distribution or >97.5% of the distribution. Data
were aggregated to obtain the mean absolute value of the BrAC
discrimination value for each user in each episode; hence, a decline over
subsequent episodes of self-monitoring would indicate that users’
accuracy in estimating their BrAC improved with subsequent episodes.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request, but may require data-sharing
agreements with the private company (BACtrack, San Francisco, CA) that originally
collected the measurements from their mobile application.

CODE AVAILABILITY
The ML code is provided in github (https://github.com/kaschbacher/bac). Visualiza-
tions of temporal and geographic patterning of BrAC levels were generated via
Python (open source), R (open source), plotly (Montreal, Canada), Highcharts (Vik i
Sogn, Norway), and MapBox API (San Francisco, CA). To visualize the primary
geographic clusters of BrAC observations, a K-means analysis was used (Python,
sklearn.cluster.KMeans). Statistical analyses were performed using Python (statsmo-
dels.api and sklearn) for general linear models or Redshift Postgres SQL for
descriptives. Computations of distances between subsequent geolocation points
were performed in Redshift Postgres SQL. AWS S3, Redshift Postgres SQL, and
Spectrum were used to build the database. Further details on variables and
parameters can be found in the methods descriptions, the Supplementary
information, in the github codebase referenced herein.
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